Python Examples

from openai import OpenAI

# Initialize client
client = OpenAI(
    api_key="your-api-key",
    base_url="https://ai.machinefi.com/v1"
)

# Simple conversation
def simple_chat(prompt):
    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}],
        max_tokens=1000
    )
    return response.choices[0].message.content

# Multi-turn conversation
def multi_turn_chat():
    messages = [
        {"role": "system", "content": "You are a Python programming assistant"},
        {"role": "user", "content": "How to read CSV files?"}
    ]
    
    response = client.chat.completions.create(
        model="gpt-4",
        messages=messages,
        temperature=0.7
    )
    
    # Add AI response to conversation history
    messages.append({
        "role": "assistant", 
        "content": response.choices[0].message.content
    })
    
    return messages

# Streaming output
def stream_chat(prompt):
    stream = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}],
        stream=True
    )
    
    for chunk in stream:
        if chunk.choices[0].delta.content is not None:
            print(chunk.choices[0].delta.content, end="")

# Usage examples
if __name__ == "__main__":
    # Simple call
    result = simple_chat("Write a Python bubble sort function")
    print(result)
    
    # Streaming output
    stream_chat("Explain basic concepts of machine learning")

Method 2: Using requests library